Package: metagam 0.4.0.9000

Oystein Sorensen

metagam: Meta-Analysis of Generalized Additive Models

Meta-analysis of generalized additive models and generalized additive mixed models. A typical use case is when data cannot be shared across locations, and an overall meta-analytic fit is sought. 'metagam' provides functionality for removing individual participant data from models computed using the 'mgcv' and 'gamm4' packages such that the model objects can be shared without exposing individual data. Furthermore, methods for meta-analysing these fits are provided. The implemented methods are described in Sorensen et al. (2020), <doi:10.1016/j.neuroimage.2020.117416>, extending previous works by Schwartz and Zanobetti (2000) and Crippa et al. (2018) <doi:10.6000/1929-6029.2018.07.02.1>.

Authors:Oystein Sorensen [aut, cre], Andreas M. Brandmaier [aut], Athanasia Mo Mowinckel [aut]

metagam_0.4.0.9000.tar.gz
metagam_0.4.0.9000.zip(r-4.5)metagam_0.4.0.9000.zip(r-4.4)metagam_0.4.0.9000.zip(r-4.3)
metagam_0.4.0.9000.tgz(r-4.4-any)metagam_0.4.0.9000.tgz(r-4.3-any)
metagam_0.4.0.9000.tar.gz(r-4.5-noble)metagam_0.4.0.9000.tar.gz(r-4.4-noble)
metagam_0.4.0.9000.tgz(r-4.4-emscripten)metagam_0.4.0.9000.tgz(r-4.3-emscripten)
metagam.pdf |metagam.html
metagam/json (API)

# Install 'metagam' in R:
install.packages('metagam', repos = c('https://lifebrain.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/lifebrain/metagam/issues

On CRAN:

5.85 score 10 stars 14 scripts 285 downloads 6 exports 33 dependencies

Last updated 5 months agofrom:60f4f988a1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:getmasdmetagamplot_between_study_sdplot_dominanceplot_heterogeneitystrip_rawdata

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSmathjaxrMatrixmetadatmetaformgcvmunsellnlmenumDerivpbapplypillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Dominance Plots

Rendered fromdominance.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-01-14
Started: 2020-01-30

Heterogeneity Plots

Rendered fromheterogeneity.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-01-14
Started: 2020-01-30

Introduction

Rendered fromintroduction.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-01-18
Started: 2020-01-30

Multivariate Smooth Terms

Rendered frommultivariate.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-01-14
Started: 2020-02-05

Simultaneous confidence intervals and p-values

Rendered frompvals.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2022-01-16
Started: 2021-11-12