Package 'efast'

Title: Exploratory Factor Analysis with Structured Residuals
Description: Create and estimate EFA and EFA with structured residuals (EFAST) models using structural equation modeling.
Authors: Erik-Jan van Kesteren
Maintainer: Erik-Jan van Kesteren <[email protected]>
License: GPL-3
Version: 0.6.3
Built: 2025-01-13 03:48:01 UTC
Source: https://github.com/vankesteren/efast

Help Index


Create a clean correlation plot

Description

This function is a thin wrapper around corrplot

Usage

cplot(
  mat,
  tl.pos = "n",
  cl.pos = "n",
  method = "square",
  addgrid.col = NA,
  ...
)

Arguments

mat

<matrix> or <list<matrix>> the matrix or list of matrices to be displayed.

tl.pos

<string> text label position, see corrplot::corrplot()

cl.pos

<string> color label position, see corrplot::corrplot()

method

<string> drawing method, see corrplot::corrplot()

addgrid.col

<string> grid colour see corrplot::corrplot()

...

other arguments passed to corrplot::corrplot()

See Also

corrplot


Get correlation matrix decomposition

Description

Get correlation matrix decomposition

Usage

decomposition(fit)

Arguments

fit

an efast model

Value

The decomposition returns four components: the observed correlation matrix, the factor-implied covaraiance, the residual variance, and the structural covariance matrix. You can plot these matrices using corrplot.


Estimate an EFAST model

Description

This function estimates efa models with residual covariance.

Usage

efast(
  data,
  M,
  rstruct,
  sample.nobs = NULL,
  auto.fix.first = FALSE,
  auto.var = TRUE,
  auto.efa = TRUE,
  information = "observed",
  std.ov = TRUE,
  ...
)

Arguments

data

<data.frame> the dataset or <matrix> covariance matrix

M

<numeric> How many factors, minimum 2

rstruct

<list> residual structure (see details)

sample.nobs

<numeric> sample size (if data = covmat, see lavaan)

auto.fix.first

<bool> see lavaan

auto.var

<bool> see lavaan

auto.efa

<bool> see lavaan

information

<character> see lavaan

std.ov

<bool> see lavaan

...

other arguments passed to lavaan

Details

Residual structure (in the form of residual covariances) can be added to the EFA through a list of pairs of variable names. See the example for more information.

Examples

## Not run: 
# Use a lavaan test dataset
test_data <- lavaan::HolzingerSwineford1939[,7:15]

# create an EFA model
test_efa <- efast(test_data, 3)

# create a (simple) residual structure
res_struct <- list(
  c("x4", "x7"),
  c("x5", "x9")
)

# create an efast model
test_efast <- efast(test_data, 3, res_struct)

compare the models
lavaan::lavTestLRT(test_efa, test_efast)

## End(Not run)

Estimate an EFA model in lavaan

Description

This function estimates efa models in the same way that efast models are estimated: using lavaan.

Usage

efast_efa(
  data,
  M,
  sample.nobs = NULL,
  auto.fix.first = FALSE,
  auto.var = TRUE,
  auto.efa = TRUE,
  information = "observed",
  std.ov = TRUE,
  ...
)

Arguments

data

<data.frame> the dataset or <matrix> covariance matrix

M

<numeric> How many factors, minimum 2

sample.nobs

<numeric> sample size (if data = covmat, see lavaan)

auto.fix.first

<bool> see lavaan

auto.var

<bool> see lavaan

auto.efa

<bool> see lavaan

information

<character> see lavaan

std.ov

<bool> see lavaan

...

other arguments passed to lavaan

Details

The constrained model constrains the residual covariance to be equal across the different ROIs.

Examples

## Not run: 
# create a test dataset
test_data <- simulate_efast()
fit_efa <- efast_efa(simdat, M = 4)
summary(fit_efa)

## End(Not run)

Estimate an EFAST-hemi model

Description

This function estimates efast models with covariance due to hemispheric symmetry.

Usage

efast_hemi(
  data,
  M,
  lh_idx,
  rh_idx,
  roi_names,
  constrain = FALSE,
  sample.nobs = NULL,
  auto.fix.first = FALSE,
  auto.var = TRUE,
  auto.efa = TRUE,
  information = "observed",
  std.ov = TRUE,
  ...
)

Arguments

data

<data.frame> the dataset or <matrix> covariance matrix

M

<numeric> How many factors, minimum 2

lh_idx

<numeric> column numbers of left hemisphere variables

rh_idx

<numeric> column numbers of right hemisphere variables

roi_names

<character> optional names of rois

constrain

<bool> whether to constrain the symmetry (see details)

sample.nobs

<numeric> sample size (if data = covmat, see lavaan)

auto.fix.first

<bool> see lavaan

auto.var

<bool> see lavaan

auto.efa

<bool> see lavaan

information

<character> see lavaan

std.ov

<bool> see lavaan

...

other arguments passed to lavaan

Details

The constrained model constrains the residual covariance to be equal across the different ROIs.

Examples

## Not run: 
# create a test dataset
test_data <- simulate_efast()
fit_efast <- efast_hemi(test_data, M = 4, 1:17, 18:34)
summary(fit_efast)

## End(Not run)

Get loadings

Description

Get loadings

Usage

efast_loadings(fit, symmetry = FALSE)

Arguments

fit

efa or efast model

symmetry

whether to display the left and right hemisphere loadings side-by-side


Check whether an object is an efast model

Description

Check whether an object is an efast model

Usage

is_efast(x)

Arguments

x

any object


Check whether an object is an efast-efa model

Description

Check whether an object is an efast-efa model

Usage

is_efast_efa(x)

Arguments

x

any object


Check whether an object is an efast-hemi model

Description

Check whether an object is an efast-hemi model

Usage

is_efast_hemi(x)

Arguments

x

any object


Get lateralization per ROI

Description

The lateralization index (LI) is calculated as (sum of the uniquenesses for the contralateral homologues) / (total residual variance after accounting for the exploratory factors). Thus, if there is no symmetry at all, the LI is 1, and if all the residual variance is explained by symmetry, the LI is 0.

Usage

lateralization(fit)

Arguments

fit

an efast model

Value

parameter estimates table of lateralization per ROI


Synthesised volume data for DKT-atlas ROIs.

Description

This data has been synthesised on the basis of real-world data from the Cam-CAN cohort. It contains 68 grey matter volume measurements (34 LH and 34 RH ROIs) for 647 participants.

Usage

data(roi_volume)

Format

A data frame with 647 rows and 68 columns

References

cam-can.org


Simulate data from an efast matrix

Description

Simulate a dataset as in the simulations of Van Kesteren & Kievit (2019). There are 17 regions of interest, measured in both the left and right hemisphere. These ROIs have a predefined amount of correlation over and above that expected by only the underlying factors.

Usage

simulate_efast(
  N = 650L,
  lam_lat = 0.595,
  lam_bil = 0.7,
  psi_cov = 0.5,
  cor_uniq = 0.4
)

Arguments

N

<int> Sample size

lam_lat

<numeric> factor loading for the lateralised factor

lam_bil

<numeric> factor loading for the bilateral factors

psi_cov

<numeric> covariances of latent variables in (0, 1)

cor_uniq

<numeric> residual correlation

Value

data frame with 17 regions of interest, bilaterally measured with 4 underlying factors and contralateral homology.

References

Van Kesteren, E. J., & Kievit, R. K. (2019) Exploratory factor analysis with structured residuals applied to brain morphology.